Some Statistical Issues in the Design and Conduct of Clinical Trials

Kevin Cain
Research Scientist, Biostatistics
Research and Statistical Consultant, Office for Nursing Research
Dept. of Biostatistics, CBS, ITHS
The importance of:

• Control group
• Randomization
• Blinding
• Intent-to-Treat: follow-up on everyone
• Keeping track of and reporting CONSORT info
Why do we need to do a Randomized Controlled Trial (RCT)?

Instead just do one of these:

• Pre-Post study
 – No Control group

• Non-Randomized Control group
 – Historical control study
 – Non-equivalent control group
 – Clinical epidemiology study
Pre-Post Study, no Control group

Did subjects improve after treatment, compared to before?
Pre-Post Study, no Control group

Did subjects improve after treatment, compared to before?
Pre-Post Study, No Control Group

• Would have gotten better anyway
• Placebo effect
• Attention effect
• Experience with outcome measures
Example: control group improves
Pre-Post Study, No Control Group

• Bias in outcome measurements
 – Tape measure waist circumference

• Completers only
 – Exercise
 – PTSD – exposure therapy

• Regression to the mean
 – High symptoms is an entry criterion
Regression to the Mean
Regression to the Mean
Regression to the Mean
Regression to the Mean
Pre-Post Study – when is it OK?

• Pilot study, feasibility study

• Know what would happen without treatment

• Outcome measure is objective, not self-report

• No selection for high symptoms in condition with fluctuating symptoms
Control Group, non-Randomized

Historical Control Group

Supplemental ascorbate in the supportive treatment of cancer: Reevaluation of prolongation of survival times in terminal human cancer*

(vitamin C)

Ewan Cameron† and Linus Pauling‡

Linus Pauling – Vitamin C & Cancer

• **100 terminal cancer** patients who were given supplemental ascorbate, usually 0 g/day, as part of their routine management

• **1000 matched controls**, similar patients who had received the same treatment except for the ascorbate.

• Tests confirm that the ascorbate-treated patients and the matched controls are representative subpopulations of the same population of "untreatable" patients.
Linus Pauling – Vitamin C & Cancer
Possible biases in Vitamin C study

- Selection of patients getting vitamin C, and of controls
 - Treating doctor decided who got Vitamin C, a subset of those are included in this analysis.
 - Database search to randomly select 10 control patients, matched for age, sex, tumor organ and histology.
- Date of ‘untreatability’
RCT of Vitamin C vs Placebo

• A double-blind RCT of 100 patients with advanced colorectal cancer.

• “On the basis of this and our previous randomized study, it can be concluded that high-dose vitamin C therapy is not effective against advanced malignant disease regardless of whether the patient has had any prior chemotherapy.”

Clinical Epidemiology Study

• Compare outcomes of patients who got treatment A versus patients who got treatment B, based on medical records.

• Attempt to control for confounders
Clinical Epidemiology Study

• Why did one person get treatment A and another person got treatment B?
• Patient choice, physician choice?
• Related to disease characteristics, prognosis?
• Related to comorbidities?
• Related to unmeasureable factors?
Randomized Controlled Trial

- Randomly assign subjects to treatment A or B
- Ensures that (in expectation) the two treatment arms do not differ in any respect except for treatment A versus B.
RCT – Random Assignment violated

- Lack of clinical equipoise
- Clinical versus research
 - This patient would benefit from treatment A
 - This patient could not tolerate treatment A

- Intentional fraud
 - Ensure better prognosis patients get treatment A
Manipulate Randomization process

- Researcher overrides random assignment

- Researcher figures out what next treatment assignment will be
 - Cheats to look at it
 - Can guess because it is predictable
 - If ‘wrong’ treatment, not enroll or delay enrollment
Manipulate after Randomization

• If subject gets randomized to the ‘wrong’ treatment, drop the subject from the study.
 – Decide subject is ineligible
 – Tell subject to not take the treatment
RCT – Non-adherence

• Patient does not receive treatment to which they are assigned.

• If they are assigned to the ‘wrong’ treatment – Switches to the other treatment

• Example: Surgery versus Medical treatment for heart disease
Randomized

Received

"As Treated"

50

Surg

40

Surg

50

Med

10

Med

15

Surg

35

Med

15

Surg

35

Med

"As Treated"
Randomized | Received | "As Treated"

Surg | Surg | Surg

Surg | Med | Med

Med | Surg | Med

Med | Med | Med

50 | 15 | 35

35 | 15 | 35
Randomized

Received

Analyzed

Exclude non-Adherent

Surg

Med

Surg

Med

Surg

Med

Med
“As Randomized (Intent-To-Treat)”

Randomized | Received | Analyzed

50 Surg

15 Surg

35 Med

15 Surg

35 Med

50 Med

35 Med

50 Med
RCT – Non-adherence

• Patient does not receive treatment to which they are assigned.

• If they are assigned to the ‘wrong’ treatment
 – Switches to the other treatment
 – Drops out of the study
 – Physician choice
 – Patient choice
RCT – Non-adherence (NA)

- **Medication:**
 - Miss doses, take lower dose
 - Stop taking medication partway through
- **Psychotherapy**
 - Miss sessions, reschedule, delay
 - Do not do homework
 - Stop coming to therapy sessions
- **Includes those who never get any doses**
Prophylactic oral antibiotics in cancer chemotherapy

Rate of infection

<table>
<thead>
<tr>
<th>Compliance:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Excellent</td>
<td>32% (46/141)</td>
</tr>
<tr>
<td>• Good</td>
<td>44% (7/16)</td>
</tr>
<tr>
<td>• Poor</td>
<td>100% (9/9)</td>
</tr>
</tbody>
</table>

Prophylactic oral antibiotics in cancer chemotherapy

Rate of infection

<table>
<thead>
<tr>
<th>Compliance:</th>
<th>Placebo</th>
<th>Antibiotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Excellent</td>
<td>32% (46/143)</td>
<td>18% (19/105)</td>
</tr>
<tr>
<td>• Good</td>
<td>44% (7/16)</td>
<td>36% (9/25)</td>
</tr>
<tr>
<td>• Poor</td>
<td>100% (9/9)</td>
<td>69% (18/26)</td>
</tr>
</tbody>
</table>

Adherence and Mortality

TABLE I—RELATION BETWEEN ADHERENCE AND 1-YEAR MORTALITY

<table>
<thead>
<tr>
<th>Adherence level</th>
<th>All patients (n=3381)</th>
<th>Psychosocial interview</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total (n=2175)</td>
<td>Propranolol (n=1081)</td>
</tr>
<tr>
<td>< 75%</td>
<td>246</td>
<td>129</td>
</tr>
<tr>
<td>% dead</td>
<td>4.9</td>
<td>5.4</td>
</tr>
<tr>
<td>≥ 75%</td>
<td>3135</td>
<td>2046</td>
</tr>
<tr>
<td>% dead</td>
<td>2.5</td>
<td>2.2</td>
</tr>
<tr>
<td>Odds ratio (95% CI)</td>
<td>2.0 (1.1, 3.6)</td>
<td>2.6 (1.2, 5.6)</td>
</tr>
</tbody>
</table>

Adherence and Mortality

<table>
<thead>
<tr>
<th>Model</th>
<th>Propranolol (n = 1081)</th>
<th>Placebo (n = 1094)</th>
<th>Total (n = 2175)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adherence only</td>
<td>Coeff: 1.13, OR: 3.1, p: 0.08</td>
<td>Coeff: 0.90, OR: 2.5, p: 0.10</td>
<td>Coeff: 0.94, OR: 2.6, p: 0.02</td>
</tr>
<tr>
<td>Adherence, clinical severity*</td>
<td>Coeff: 1.07, OR: 2.9, p: 0.11</td>
<td>Coeff: 0.90, OR: 2.5, p: 0.12</td>
<td>Coeff: 0.89, OR: 2.4, p: 0.04</td>
</tr>
<tr>
<td>Adherence, clinical severity, sociodemographic†</td>
<td>Coeff: 1.02, OR: 2.8, p: 3.13</td>
<td>Coeff: 0.92, OR: 2.5, p: 0.12</td>
<td>Coeff: 0.82, OR: 2.3, p: 0.06</td>
</tr>
<tr>
<td>Adherence, clinical severity, sociodemographic, psychological‡</td>
<td>Coeff: 1.01, OR: 2.8, p: 0.14</td>
<td>Coeff: 1.03, OR: 2.8, p: 0.09</td>
<td>Coeff: 0.93, OR: 2.5, p: 0.03</td>
</tr>
<tr>
<td>Adherence, clinical severity, sociodemographic, psychological, smoking status</td>
<td>Coeff: 1.03, OR: 2.8, p: 0.13</td>
<td>Coeff: 0.97, OR: 2.7, p: 0.10</td>
<td>Coeff: 0.92, OR: 2.5, p: 0.04</td>
</tr>
</tbody>
</table>

*Clinical severity = congestive heart failure, severity of myocardial infarction, and age
†Sociodemographic = non-white, unmarried, < 12th grade education
‡Psychological = composite variable of high life-stress and social isolation

“As Randomized (Intent-To-Treat)”

Randomized

Received

Analyzed

Drug

Placebo

Drug

NA

Drug

NA

Placebo

Placebo

Placebo

Drug

Drug

Drug

Placebo

Placebo

Placebo

Drug

NA

Placebo

Placebo

Placebo

Drug

Drug

Drug

Placebo
“Intent-to-Treat” means:

• Get follow-up data on everyone, regardless of adherence

• Analyze data from all subjects, according to random assignment

• Missing data, lost to follow-up?
 – That is a different issue

• It is NOT true that
 – Intent-to-Treat = Impute missing data
“DROP OUT”

• Non-adherent
 – Does not get full dose

• Lost to follow-up
 – Does not provide follow-up data

• “The reliability and interpretability of results from clinical trials can be substantially reduced by missing data.”

• “Although rational imputation methods may be useful to treat missingness after it has occurred, these methods depend on untestable assumptions.”

• “Thus, the preferred and often only satisfactory approach to addressing missing data is to prevent it.”
Sample template for the CONSORT diagram showing the flow of participants through each stage of a randomized trial. The text boxes can be modified by clicking on them.
ASSESS FOR ELIGIBILITY (n = 126)

NOT MEETING INCLUSION CRITERIA (n = 6)

REFUSED TO PARTICIPATE (n = 60)

RANDOMISED (n = 60)

ALLOCATED TO TENS GROUP (n = 28)

LOST TO FOLLOW UP (n = 0)

DISCONTINUED INTERVENTION (n = 1)

ANALYSSED (n = 27)

EXCLUDED FROM ANALYSIS (n = 0)

ALLOCATED TO FAIRMED BACK 100 GROUP (n = 32)

LOST TO FOLLOW UP (n = 0)

DISCONTINUED INTERVENTION (n = 5)

ANALYSSED (n = 27)

EXCLUDED FROM ANALYSIS (n = 0)
190 initially responded to announcement (University: 96; SAAC: 94)

103 completed the screening assessed for eligibility (University: 53; SAAC: 50)

6 excluded (not meeting inclusion criteria):
1 under age
1 borderline personality disorder
3 not currently smoking
1 occasional (<10 daily cigarettes)
16 refused to participate

81 eligible for treatment

43 Allocated to ACT

27 Treatment completers (at least 5 sessions)
25 provided 3-month follow-up data
23 provided 6-month follow-up data
24 provided 12-month follow-up data
43 in intent-to-treat analyses

38 Allocated to CBT

29 Treatment completers (at least 5 sessions)
21 provided 3-month follow-up data
19 provided 6-month follow-up data
19 provided 12-month follow-up data
38 in intent-to-treat analyses
Preventing loss to follow-up

• Collect baseline data before randomization
• Subjects need to understand up front that giving outcome data is a commitment, separate from getting treatment
• Have different staff collect outcome data than those delivering intervention
• Pay subject for outcome data collection
• Methods for keeping in touch
• Reduced outcome data if needed
Summary

• Only way to definitively determine treatment effectiveness is an RCT that has
 – Intent-to-treat procedures and analysis
 – Very little loss of follow-up data
 – No other threats (randomization, blinding)

• Non-adherence is bad, but loss to follow-up is much worse

• Loss before randomization is OK, loss after randomization is not
Statistical Consultation Services

• ITHS – Center for Biomedical Statistics
• https://www.iths.org/CBS

• If affiliated with the School of Nursing:
• http://www.son.washington.edu/research/internal/Consultation/Consultants.asp