Can That Evidence-Based Practice Be Implemented?

Designing and Supporting Streamlined and Contextually Appropriate Innovations in Behavioral Health

Associate Professor

UW Psychiatry & Behavioral Sciences

Director

School Mental Health Assessment, Research, & Training (SMART) Center Methods Core PI

University of Washington ALACRITY Center (P50MH115837; PI: Arean)

LS Institute of Translational Health Sciences Accelerating Research. Improving Health.

The Institute of Translational Health Sciences

The Institute of Translational Health Sciences

is dedicated to speeding science to the clinic for the benefit of patients and communities throughout Washington, Wyoming, Alaska, Montana, and Idaho.

ITHS promotes this translation of scientific discovery to practice by fostering innovative research, cultivating multidisciplinary research partnerships, and ensuring a pipeline of next generation researchers through robust educational and career development programs.

ITHS Research Resources and Services

Biomedical Informatics

Biostatistics SCH & UW

Data and Safety Monitoring

Education and Training

GMP Production Facility

Research Navigation

Preclinical Consulting

Research Coordination

Regional Collaboration

Adult, Pediatric, Dental Translational Research Units

Career Development Series

Send ideas for future topics to: Marissa Konstadt,

Manager of Communications and Special Projects

konstadt@uw.edu

206.616.4043

Institute of Translational Health Sciences accelerating research. IMPROVING HEALTH.

By the end of this session, you will be able to:

- Recognize key concepts from the field of user and human-centered design
- Apply user-centered design principles to complex psychosocial interventions in health
- Describe methods of evaluating the usability of complex psychosocial interventions

- 1. Human/User-centered design (UCD) overview
- 2. Design and usability for complex psychosocial innovations
- 3. USE-EBPI methodology for assessing usability

"Logic is wonderful, but it doesn't describe real behavior. When we are designing...we need to design for real people."

-Don Norman

The process of creating or shaping tools for <u>direct human use</u>

THS Institute of Translational Health Sciences ACCELERATING RESEARCH. IMPROVING HEALTH. "The alternative to good design is <u>bad design</u>, not no design at all. Everyone makes design decisions all the time without realizing it."

-Douglas Martin (1990)

"The user is not like me"

Product developers tend to underestimate user diversity in their design processes

- Base designs on people similar to themselves (Cooper, 1999; Kujala & Matyla, 2000)
- Identification of representative users/user needs can correct this bias (Kujala & Kauppinen, 2004)

Problematic Design is EVERYWHERE

PLEASE PULL HANDLE TO TURN WATER ON . TURN LEFT OR RIGHT TO ADJUST THE TEMPERATURE. THANK YOU

Institute of Translational Health Sciences Accelerating Research. Improving Health.

Problematic Design is EVERYWHERE

Up position

Down position

Superposition

It is a well known fact that you must spin a USB three times before it will fit. From this, we can gather that a USB has three states.

Until the USB is observed it will stay in the superposition. Therefore it will not fit until observed – except for in cases of USB tunneling.

Problematic Design can Have Major Consequences

https://commons.wikimedia.org/wiki/File:Butterfly_Ballot,_Florida_2000_(large).jpg

Why is Design so Difficult?

- All design involves tradeoffs
- Good designs are often not obvious
- Humans are unpredictable and illogical
- Humans make errors
- Design relies on process expertise, not domain expertise

Usability: the extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency, and satisfaction (International Standards Organization, 1998)

Improving Usability with User-Centered Design

<u>User-centered design (UCD)</u> is an approach to design that grounds the process in information about the people and settings that will use the product.

Rooted in human-computer interaction, industrial design, & cognitive psychology
 Research User Center Designed Designed

Intervention Design & Usability in Behavioral Health

THS Institute of Translational Health Sciences Accelerating Research. IMPROVING HEALTH.

System Level: Intervention

EBPIs Dominate the D&I Landscape in MH

Most MH research exists at the level of individual evidencebased psychosocial intervention (EBPI) manuals

MH EBPIs are Well Engineered

- Emphasize technical "correctness"
 - Delivery with fidelity
- Robust solutions to well-defined problems

MH EBPIs are Terribly Designed

- Long (e.g., 12-16+ sessions), often with diminishing returns
- Confining/inflexible
- Complicated/difficult to learn
 - -Even harder to learn well (e.g., w/ fidelity)
 - –Unclear what parts are important (unpacking studies)

MH EBPIs are Terribly Designed

FEATURE CREEP

The misguided notion that somehow more is always better

Institute of Translational Health Sciences accelerating research. Improving health.

"The field has generally designed interventions to try to get people to do what experts believe is beneficial and has paid far less attention to what users want or how to fit tools into the fabric of users' lives."

Intervention-Level Determinants are Underexplored in Implementation Science

- SIRC Instrument Review Project (IRP) (Lewis et al., 2015)
 - Only <u>19</u> instruments addressed intervention characteristics
 - Inner setting: 90 instruments
 - Individual: 98 instruments
- **0** instruments addressed

Design Quality & Packaging

Intervention-Level Determinants are Underexplored in Implementation Science

Characterization of ERIC strategies (n = 73) at most likely system level targeted

System Level	# Strategies
Outer setting	32
Inner setting	34
Individual	18
Intervention	3
TOTAL	73

Design Goals for EBPIs

Principle	Description
(1) Learnability	Well-designed EBPI should provide users opportunities to <u>rapidly build understanding</u> of, or facility in, their use.
(2) Efficiency	Minimize the time, effort, and cost of using the EBPI to resolve identified problems.
(3) Memorability	Users can <u>remember and successfully apply</u> important elements of the EBPI protocol without many added supports.
(4) Error Reduction	Prevent or allow <u>rapid recovery</u> from errors or misapplications of EBPI content.

Design Goals for EBPIs (continued)

Principle	Description
(5) Satisfaction/	Be viewed as acceptable and valuable,
Reputation	especially compared to alternative products available within the larger mental health marketplace.
(6) Low cognitive load	Simplify task structure or the number of steps in order to <u>minimize the amount of thinking</u> <u>required</u> to complete a task.
(7) Exploit natural constraints	Successful designs should incorporate or <u>explicitly address the static properties of an</u> intended destination context that limit the
	ways a product can be used.

Intervention Usability is a Key "Upstream" Determinant of Implementation Outcomes

Relationship of EBPI Usability to Implementation and Service Outcomes...

Intervention Usability	<i>Perceptual</i> Implementation Outcomes	<i>Behavioral</i> Implementation Outcomes	<i>Service</i> Outcomes		
 Efficiency Effectiveness Errors	AcceptabilityAppropriatenessFeasibility	 Adoption Fidelity Reach/Penetration	SymptomsFunctioningWellbeing		

Evaluating the Design Quality of Complex Psychosocial Interventions

THS Institute of Translational Health Sciences Accelerating Research. IMPROVING HEALTH.

"Good design is when someone shows it to you, you say, 'Oh, I see'"

~Don Norman

THS Institute of Translational Health Sciences accelerating research. IMPROVING HEALTH. EBPI usability testing allows for...

- Evaluation of innovation characteristics likely to be predictive of adoption
- 2. Discovery of the most critical issues that should be addressed in redesign efforts

1. Identify users/participants

Table 1. EBPI Usability Test Participant Identification Process

1. Generate preliminary user	Generate an overly-inclusive list
list	Consider individuals in different roles
2. Articulate most relevant user	Personal characteristics
characteristics	Task-related characteristics
	Geographic/social/setting characteristics
3. Describe and prioritize main	Articulate primary, secondary, and negative
user groups	(i.e., non-) users
4. Select typical and	Sample into user subtype strata
representative users for testing	Recruit ~6-20 users per test

2. Define EBPI components

Table 2. EBPI Tasks and Packaging Components

		Definition	Example	
	Content	Discrete clinical techniques or	Exposure; Cognitive restricting;	
S	elements	strategies used in a session	Psychoeducation; Agenda setting	
ask	Structures	Processes that guide the selection,	Team-based goal setting;	
Η		organization, and maintenance of	Measurement-based care; Structured	
		content	supervision; Intervention algorithms	
	Artifacts	Tangible, digital, or visual	Intervention manuals; Information	
50		materials that exist to support task	handouts; Job aids; Homework	
ging		completion	sheets	
kag	Parameters	Static properties that define and	Modality; Prescriptive content	
ac		constrain the intervention or service	sequencing; Session length or length	
Д		"space"	of stay/care episode; Content	
			delivery method; Dosage; Language	

3. Plan and conduct the usability tests

\mathbf{T}

Recommended Usability Testing Techniques

	•	-		
Quantitative	Heuristic	Cognitive	Lab-based,	In-vivo /
instruments (e.g.,	evaluation by	walk-throughs	scenario-driven	extended user
IUS)	experts		user testing (e.g.	testing (e.g., A/B
			beh rehearsal)	testing)
Lowest cost			Highest cost	

4. Organize and prioritize usability issues

Adapted User Action Framework for Organizing EBPI Usability Issues.

Step of Interaction Cycle	Core Question	Example Usability Problems	
Planning	Can the user understand and/or decide what to do?	 Low <i>conceptual</i> clarity No ability to anticipate/avoid errors 	
Translation	Can the user translate plans into actions?	 Its using to underpute/uvoid errors Insufficient cognitive affordances (e.g., visual cues) Low <i>procedural</i> clarity 	
Actions	Can the user successfully perform actions within typical use cases?	 Awkwardness and fatigue High task complexity Low task efficiency 	
Assessment / Feedback	Can the user understand effects of actions?	 Ease of information collection (i.e., accessibility; efficiency) Timeliness of performance feedback 	

Step 1: User identification

-Identified most relevant user characteristics:

- Experience delivering or supervising exposure interventions (clinicians, supervisors)
- Anxiety severity (consumers)
- -Clinicians identified as the primary user group
 - Novice, intermediate, advanced

Step 2: Define components

- -Selected **content elements**: Exposure procedures with client
- –Selected structures: Subjective units of distress (SUDs; a.k.a., "fear thermometer") ratings
- -Selected artifacts: Brief exposure guide
- -No **parameters** explicitly selected (most were embedded in other components)

Step 3: Plan/conduct tests

- User testing RQs:

- 1. What is the overall level of usability of the exposure protocol?
- 2. To what extent does the protocol align with established usability principles?
- 3. Does user experience with exposure procedures impact usability?
- 4. What specific usability issues do users experience when applying the protocol?

Step 3: Plan/conduct tests

Recommended Usability Testing Techniques

Institute of Translational Health Sciences Accelerating Research. IMPROVING HEALTH.

Heuristic Evaluation Rubric for EBPIs **(HERE)**

Heuristic Evaluation Rubric for EBPIs (HERE)

Criter	ria:	Scale (1-10; 1=not at all; 10=extremely)
1.	Learnability	1 2 3 4 5 6 7 8 9 10
	The EBPI provides users with opportunitie facility in, its use.	es to rapidly build understanding of, or
2.	Efficiency	1 2 3 4 5 6 7 8 9 10
	The EBPI can be applied by users to reso effort, and cost.	olve identified problems with minimal time,
3.	Memorability	1 2 3 4 5 6 7 8 9 10
	Users of the EBPI can remember and suc EBPI protocol without many added suppo	ccessfully apply important elements of the orts.
4.	Error reduction	1 2 3 4 5 6 7 8 9 10
	The EBPI explicitly prevents or allows rap of content.	oid recovery from errors or misapplications
5.	Low cognitive load	1 2 3 4 5 6 7 8 9 10
	The EBPI task structure is sufficiently sim complete a task minimized.	ple so that amount of thinking required to
6.	Exploit natural constraints	1 2 3 4 5 6 7 8 9 10
	The EBPI incorporates or explicitly addre destination context, which may affect the	sses the static properties of the intended ways it can be used.
7	Overall assessment	1 2 3 4 5 6 7 8 9 10

"Lab-based" testing

- -N = 10 users (3 novice, 4 intermediate, 3 advanced)
- -Pre-testing review of materials
- Remote testing sessions with a facilitator and notetaker
- 1. "<u>Think aloud</u>" review of artifacts
- 2. <u>Behavioral rehearsal</u> of exposure procedures
- 3. Debrief interview
- 4. Completion of the Intervention Usability Scale

<u>Step 4</u>: Organize/Prioritize Usability Issues (i.e., results)

- Usability issues: aspects of the intervention which make it unpleasant, inefficient, onerous, or impossible for the user to achieve their goals in typical usage situations (Lavery et al., 1997)
 - Identified via consensus coding (Hill et al., 2005)
- Priority ratings for each issue: "1" (low priority) and"3" (high priority)
- –Assigned stages of the User Action Framework (i.e., planning, translating, actions, assessment) to each issue (UAF; Khajouei et al., 2011)

S Institute of Translational Health Sci accelerating research. Improving health

<u>Step 4</u>: Organize/Prioritize Usability Issues (i.e., results)

- IUS range (scale: 0-100): 65-85
- mean = 80.5 (SD = 9.56)

Group	IUS score	
Novice (n = 3)	77.5 (<i>SD</i> = 10.90)	
Intermediate (n=4)	77.5 (<i>SD</i> = 8.66)	
Advanced (n = 3)	87.5 (SD = 8.66)	

Table 6. HERE Evaluation Ratings

Item	Mean	SD
Learnability The EBPI provides users with opportunities to rapidly build understanding of, or facility in, its use.	7.33	1.155
Efficiency The EBPI can be applied by users to resolve identified problems with minimal time, effort, and cost.	8.33	0.577
Memorability Users of the EBPI can remember and successfully apply important elements of the EBPI protocol without many added supports.	6.33	0.577
Error Reduction The EBPI explicitly prevents or allows rapid recovery from errors or misapplications of content.	7.67	0.577
Low Cognition Load The EBPI task structure is sufficiently simple so that amount of thinking required to complete a task minimized.	6.33	0.577
Exploit Natural Constraints The EBPI incorporates or explicitly addresses the static properties of the intended destination context, which may affect the ways it can be used.	5.00	3.606
	- 22	0.555

Overall Assessment

7.33 0.577

<u>Step 4</u>: Organize/Prioritize Usability Issues (i.e., results)

- –Task completion of exposure behavioral rehearsal. Failure rates...
 - 2 (of 3) novices (66%)
 - 1 (of 4) intermediates (25%)
 - 0 (of 3) experts (0%)

Table 7. Categorization and Rating of Usability Problems

Average Rating / User Type	Usability Problem	Step of UAF Impacted P T A F	
	Contraindicated behaviors are ambiguous	X X	
	Failure to block contraindicated behaviors	X	Legend
	Signposting	X X X X	P – Planning
2.5	Unclear Processing detail	X X	T – Translation
	Lack of feedback on accuracy of hierarchy level	X X	A – Actions
	Insufficient support of exposure planning	XX	F – Feedback
	Unclear purpose/rationale	X X	- novice
	Omission of key content	X X	- intermediate
	Failure to highlight therapist barriers	X	- expert
	Insufficient feedback for success	X	Filled circle=user experience issue
	Lack of troubleshooting for family/system issues	X X X	
	Habituation is unclear	X X X	
	Developmental level is unclear	X	Lyon, Chung & Koerner (under review)

Example redesign recs:

- 1. Clearer labeling of information within exposure guide
- 2. More explicit supports to identify and avoid contraindicated behaviors when delivering exposure (e.g., reassurance)
- 3. Directions and example scripts for processing exposures
- 4. Build in feedback loop/guidance regarding appropriate exposure difficulty
- 5. Design abbreviated version of procedures to account for limited time and/or explicit guidance on exposure opportunities outside of the office

Discover, Design, Build, & Test (DDBT) Framework (P50MH115837; Overall PI: Arean; Methods Core PI: Lyon)

- 1. Intervention design is an under-explored and underaddressed determinant of implementation
- 2. User-centered design (UCD) and implementation science share similar goals (i.e., facilitating the use of innovations)
- 3. USE-EBPI is one method for evaluating the usability of complex psychosocial interventions that may explain adoption issues and drive EBPI redesign
- 4. Application of UCD in implementation science is just beginning

