Introduction to Clinical Research Boot Camp 2019

ITHS !

Institute of Translational Health Sciences Accelerating Research. IMPROVING HEALTH.

Welcome!

Tuesday, July 30-Wednesday, July 31 8:00am-4:30pm UW Husky Union Building Lyceum/250/145

Introduction to Clinical Research Boot Camp 2019

Institute of Translational Health Sciences Accelerating Research. IMPROVING HEALTH.

Institute of Translational Health Sciences Accelerating Research. Improving Health.

What We Offer:

1

3

- **Research Support Services:** Members gain access the different research services, resources, and tools offered by ITHS, including the ITHS Research Navigator.
- Community Engagement: Members can connect with regional and community based practice networks
 - Education & Training: Members can access a variety of workforce development and mentoring programs and apply for formal training programs.
- 4 **Funding:** Members can apply for local and national pilot grants and other funding opportunities. ITHS also offers letters of support for grant submissions.

Contact our **Research Navigator**

Project Consultation

Strategic Direction

Resources and Networking

Melissa D. Vaught, Ph.D. ithsnav@uw.edu 206.616.3875

Introduction to Clinical Research Boot Camp 2019

Keynote Working toward a cure in Hemophilia; Progress in Gene Therapy Presented by Barbara Konkle, MD

Institute of Translational Health Sciences Accelerating Research. IMPROVING HEALTH.

ITHS

Working Toward a Cure in Hemophilia: Progress in Gene Therapy

Barbara A. Konkle, M.D. Chief Scientific Officer Associate Director, Washington Center for Bleeding Disorders Director, Hemostasis, Platelet Immunology and Genomics Laboratory Bloodworks Northwest Professor of Medicine/Hematology University of Washington Seattle, WA USA

> UNIVERSITY of WASHINGTON

Disclosures

Shareholder	No relevant conflicts of interest to disclose
Grant / Research Support	Octapharma, Pfizer, Spark, Takeda/Shire, Uniqure, Sanofi
Consultant	BioMarin, Pfizer, Roche/Genentech, Sanofi
Employee	No relevant conflicts of interest to disclose
Paid Instructor	No relevant conflicts of interest to disclose
Speaker bureau	No relevant conflicts of interest to disclose
Other	No relevant conflicts of interest to disclose

Outline

- Brief history of gene therapy
 - Advances and setbacks
- Hemophilia as a target for gene therapy
- Ethical issues in gene therapy research/commercialization

Gene Therapy

- Definition: Products that mediate their effects by transcription and/or translation of transferred genetic material and/or by integrating into the host genome and that are administered as nucleic acids, viruses or genetically engineered microorganisms¹
- Approaches:²
 - Somatic gene therapy
 - Change is not passed along to the next generation
 - Current approved approach
 - Germline gene therapy
 - Therapeutic or modified gene will be passed on to next generation³

wrong

aoyi Wang 🖬, Hui Yang 🖻

Gene-edited babies: What went wrong and what could go

Published: April 30, 2019 • https://doi.org/10.1371/journal.pbio.3000224

Approaches to Gene Therapy

- Common therapeutic strategies¹
 - Lentivirus for *ex vivo* gene transfer into hematopoietic and other stem cells^{2,3}
 - AAV for *in vivo* transfer into postmitotic tissues^{2,4}

AAV: Adeno-associated virus.

1. US FDA. https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/what-gene-therapy (Accessed June 2019). 2. Mingozzi F, High KA. *Nat Rev Genet* 2011:12:341. 3. Milone MC, O'Doherty U. *Leukemia* 2018;32:1529. 4. Colella P, et al. *Mol Ther Methods Clin Dev* 2018;8:87.

Image adapted from US FDA – What is gene therapy.¹

Approaches to Gene Therapy - 2

Milestones in Gene Therapy

- Early studies with advances, but also setbacks
- First therapeutic ex-vivo gene therapy in 1990s
 - X-linked severe combined immune deficiency (SCID)
 - First generation γ-retroviral vectors with gene expressed under the control of viral regulatory elements
 - Positive response, however 5/20 developed leukemia due to insertional mutagenesis
 - Adenosine deaminase deficiency (ADA-SCID)
 - Retroviral transfer of ADA gene into HSCs
 - Early partial response, now with efficacy comparable to enzyme replacement
 - Approved by EMA in 2016
 - No leukemia
- Lentiviral vectors thought to be less genotoxic than retroviral vectors
 - Vectors under clinical development without viral regulatory elements

Major Setback in Gene Therapy in 1999

- Death of Jesse Gelsinger from adenoviral-mediated gene therapy for partial ornithine transcarbamylase deficiency
 - Major systemic reaction
 - Death from multi-organ failure
- Issues raised
 - Did subject meet inclusion criteria?
 - Milder disease
 - Conflict of interests
 - Involvement of investigator who developed vector in clinical trial
 - Did they underplay potential immune response?

JG 3 months before death

1. Wirth T, et al. Gene 2013;525:162. 2. Mingozzi F, High KA. Nat Reviews: Genetics 2011;12:341. 3. Anguela XM, High KA. Annu Rev Med 2019;70:273.

Continued Progress in Gene Therapy

- Steady progress in 21st century resulting in drug approvals
 - 2012, EMA approves first gene therapy Alipogene tiparvovec, for lipoprotein lipase deficiency
 - 2018, US FDA and EMA approve Voretigene neparvovec for RPE65 mutation-associated retinal dystrophy

- On June 9, 2019:
 - 3985 gene therapy studies on ClinicalTrials.gov

CARL ZIMMER SCIENCE 08.13.13 06:30 AM

GENE THERAPY EMERGES FROM DISGRACE TO BE THE NEXT BIG THING, AGAIN

THIS VIRUS LAID WASTE TO JAMES WILSON'S CAREER. THIS VIRUS COULD BRING HIM REDEMPTION. THE FALL AND RISE OF GENE THERAPY

AAV-Mediated *in-vivo* Gene Therapy

- Most common approach for *in vivo* gene transfer into post-mitotic tissues
- Can be targeted with tissue-specific regulatory elements
- Native virus is not known to cause disease and virus is replication defective
- Mostly non-integrating

Gene Therapy for Hemophilia

- Recognised early as good target
 - Single gene disorder¹
 - Wide range of levels can produce therapeutic effect without safety concerns for factor activity¹
- Early trials confirmed
 - Factor VIII and IX can be synthesized and undergo post-translational modification in cells that are not the normal site of production^{2–4}
 - Functional factor activity can be secreted into the blood stream^{2–4}

^{1.} Lheriteau E, et al. *Blood Rev* 2015;29(5):321–8. 2. Murphy SL, High KA. *Br J Haematol* 2008;140:479–87. 3. Nathwani AC, et al. *N Engl J Med* 2011;365:2357–65. 4. Nathwani AC, et al. *N Engl J Med* 2014;137(21):1994–2004.

History of Hemophilia

- Talmud 2nd century
 - Recognition of bleeding with circumcision
- Al-Zahrawi, renowned 10th-11th century Arab physician
 - Described families with hemorrhagic disorder in males
- John Otto, physician in Philadelphia, USA
 - In 1803, published a description of X-linked bleeding disorder.
- Queen Victoria 19th century
 - Descendants spread hemophilia through Europe

Hemophilia: Recognition

- Worldwide: At least 1/5000 male births
- New mutation rate ~ 30%
 - Thus hemophilia seen in all racial groups
 - First presentation may be bleeding symptoms in a female genetic carrier
- Hemophilia A ~ 80% of cases
- Hemophilia B ~ 20% of cases
- Presentation and diagnostic approach the same with A and B
 - Overall hemophilia B may be milder, but not useful on an individual patient level

Hemophilia: Pathophysiology

- FVIII accelerates the rate of FX activation by FIXa, eventually leading to the generation of thrombin (FIIa) and subsequent formation of the fibrin clot
- Deficiency of either FVIII or FIX predisposes to spontaneous and trauma-induced hemorrhage

Inheritance of Hemophilia

Genetics of Hemophilia A

Genetics of Hemophilia B

Johnsen JM, et al. Blood Advances 2017;1:8

Presentation of Hemophilia

- Average onset of clinical symptoms
 - Severe: 1.5 years (many will present at birth)
 - Moderate: 3 years
 - Mild: 5 years
- Initial presentation:
 - Early postnatal procedures
 - With intramuscular injections
 - With dental eruptions/loss/tongue biting
 - Spontaneous hemarthroses after onset of walking

Sites of Bleeding

Common

- Mucous membrane
- Soft tissue
- Muscle
- Joints (hemarthroses)
- Life-threatening
 - Central nervous system
 - Head
 - Neck and throat
 - Gastrointestinal
 - Retroperitoneal

Advances in Hemophilia Care: The Past Six Decades

Effective therapy normalizes life expectancy

Darby et al, 2007

Joint Disease: Prevent by Primary Prophylaxis

- Prevents recurrent bleeding and chronic arthropathy
- Starting at an earlier age improves long-term outcomes
- Secondary prophy slows, but may not prevent, ongoing joint damage
- Low-dose primary prophylaxis can provide joint protection

Astermark J et al. *Br J Haematol.* 1999;105:1109-1113; Van den Berg HM et al. *Haemophilia.* 2006;12(suppl 3):159-168; Manco-Johnson MJ et al. *N Engl J Med.* 2007;357:535-544; Eshghi P et al. Clin Appl Thromb Hemost. 2018;24:513.; Wu RH, et al. Expert Rev Hematol. 2017;10:995.

Goal in Hemophilia Care

Why gene therapy for hemophilia ?

- Factor therapy is very labor intensive and expensive
 - Breakthrough bleeding still occurs
- ~30% of patients with severe hemophilia A develop neutralizing antibodies (inhibitors) to treatment
- To date, alternative therapies do not normalize hemostasis
- Concern about treatment availability
- Patient desire to be cured of disease
- Most of the world without treatment

For prophylaxis with FVIII: Infusions every other day to twice weekly

Gene Therapy Approaches in Hemophilia

Approach	Comments
Ex vivo F8 transfected fibroblast	 Implanted 100–400 million cells in peritoneal cavity Small, transient increase in FVIII in 4/6 subjects
MoMLV-BDD-F8 IV	 Some evidence of vector in PBMCs At most, small transient increases in FVIII
Adenovirus-F8	Phase I trial stopped for inflammatory response in subject
Lentivirus	 In preclinical studies Integrating vector, but risk of insertional mutagenesis decreased with improved vector design Potential for use in liver-directed therapy in children Ex vivo and in vivo HSC transduction to result in FVIII expression in megakaryocytes and platelets
AAV	 Vector used in current human trials Wild-type virus is non-pathogenic Predominantly non-integrating Loss in dividing cells Used for targeted integration into albumin locus

AAV: Adeno-associated virus; BDD: B-domain deleted; HSC: Hematopoietic stem cell; IV: Intravenous; MoMLV: Moloney murine leukemia virus; PBMC: Peripheral blood mononuclear cell. Roth DA, et al. *N Engl J Med* 2001;344:1735. Powell JS, et al. *Blood* 2003;102:2038. Kelley et al. *Haemophilia* 2002;8:261-267. Evens H, et al. *Haemophilia* 2018;24(Suppl 6):50. Shi Q. *Molec Ther Methods Clin Dev* 2018;9:100. George L. *Blood Adv* 2017;1:2591.

AAV-Mediated Therapy in Hemophilia

- 1st in human
 - Intramuscular injection of F9 construct into muscle¹
 - Very low systemic expression with multiple muscles injected
 - Persistent expression in muscle²
- 1st liver infusion (AAV2-F9; CHOP/Stanford)³
 - Expression in high dose (2 × 10¹²) subject
 - But unexpected hepatic inflammation and loss of transgene
 - Viral capsid T-cell immune response
 - Subject at same dose with anti-AAV2 antibodies
 - Limited expression
 - Study not continued

This slide contains information about a product that has not been approved by the Therapeutic Goods Administration. Image from Manno *et al.*³

AAV: Adeno-associated virus; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase.

1. Kay MA, et al. Nat Genet 2000;24:257. 2. Buchlis G, et al. Blood 2012;119:3038.3. Manno CS, et al. Nat Med 2006;12:342.

First study with long-term expression

Subsequent haemophilia B trial (St. Jude/UCL)

- Persistent FIX activity reported to date
 Marked decrease in factor consumption
- Loss of transgene associated with transaminitis responsive to steroid therapy
- Study in long-term follow up

This slide contains information about a product that has not been approved by the Therapeutic Goods Administration. Image from Nathwani *et al.*²

^{1.} Nathwani AC, et al. N Engl J Med 2014;371:21. 2. Nathwani AC, et al. Hematol Oncol Clin N Am 2017;31:853.

Optimizing AAV Vectors

- Decrease in empty capsids
- Use of different AAV serotypes
- Optimization of liver-specific promoter/regulatory regions
- Codon optimization of F8 and F9 expression cassettes
- Use of optimized B-domain deleted F8
 - Size to allow optimal use of AAV
- Increase specific activity of F9 insert through use of Padua variant (R338L)

Mingozzi F, High KA. Nat Rev Genet 2011;12:341. Evens H, et al. Haemophilia 2018;24(Suppl 6):50. George L. Blood Adv 2017; 1:2591. Pierce GF, Iorio A. Haemophilia 2018;24(Suppl.6):60. Colella P, et al. Mol Ther Methods Clin Dev 2018;8:87.

- Haemophilia B gene therapy may provide stable FIX levels for >8 years
- Now, both for haemophilia A and haemophilia B initial responses are being achieved to within or near normal factor levels
- Minimal short-term toxicity to date
- Patients with marked decrease in bleeding and use of factor replacement therapy
- Patients report feeling normal

* Subsequent to the data cut used for the ISTH presentation, Subject 9 attained normal levels at week 7

Questions in Haemophilia Gene Therapy

- Why is there such variability in expression between subjects?
 - Role of vector capsid, vector production, host immune repertoire, transgene construct, etc?
- Which factor assay methodology is relevant to bleeding risk?
 - One stage versus chromogenic
- Will factor activity levels be sustained?
 - Will that be different for haemophilia A and B?
 - Does site of vector transfection make a difference?
- If not sustained, will re-dosing be feasible?
- Can manufacturing be scaled up for commercialization?
- When will approaches allow gene therapy in young children and other populations, not included today?
- Can we modulate known and unknown risks of therapy?
- What will it cost and how will it be paid for?

Risks with AAV Gene Therapy

Some knowns

- Short-term liver toxicity
- Development of anti-AAV antibodies
- Wide inter-individual expression
 - Partially explained by anti-capsid T-cell immune response

Some unknowns

- Long-term liver toxicity
 - Impact of prior HCV infection unknown
- Risk of insertional mutagenesis
 - AAV integration estimated at 0.1–1%
 - Becomes real risk with current number of viral genomes infused
- Germline transfer
 - Animal models do not demonstrate AAVinfection of germ cells
 - In human studies vector has cleared from semen

Looking to the Future: My View

- Gene therapy will successfully decrease bleeding and factor consumption
- Some patients may not need factor infusion post-gene therapy
- Sustainability may depend on vector, achieved level and site expressed
- There will be gradual uptake in the community
- New approaches, including new vectors, will allow treatment and re-treatment of children and other patient groups
- An option for low-resource countries

That being said....we proceed with caution

- Ethical Issues
 - Consent for potential long-term unknown risks
 - Many patients excited about possibility of cure
 - How to be sure patient understands risks
 - Consent is a process
 - Current trials with initial observation period before vector infusion
 - -What risks are acceptable when standard of care is very good?
 - -In current trials with AAV
 - No or loss of response prevents re-dosing
 - In hemophilia can revert to prior therapy
 - -How will price influence access?